Carbon Dioxide Information Analysis Center

The Carbon Dioxide Information Analysis Center (CDIAC) is the primary climate-change data and information analysis center of the U.S. Department of Energy (DOE). CDIAC is located at DOE's Oak Ridge National Laboratory (ORNL) and includes the World Data Center for Atmospheric Trace Gases. CDIAC's data holdings include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon dioxide and other radiatively active trace gases; carbon cycle and terrestrial carbon management datasets and analyses; and global/regional climate data and time series. CDIAC provides scientific and data management support for projects sponsored by a number of agencies, including the AmeriFlux Network, continuous observations of ecosystem level exchanges of CO2, water, energy and momentum at different time scales for sites in the Americas; the Ocean CO2 Data Program of CO2 measurements taken aboard ocean research vessels; DOE-supported FACE experiments, which evaluate plant and ecosystem response to elevated CO2 concentrations; and the HIPPO project, which is analyzing the atmospheric carbon cycle and greenhouse gas concentrations from pole to pole over the Pacific Ocean. CDIAC is supported by DOE's Climate and Environmental Sciences Division within the Office of Biological and Environmental Research (BER).

すべてのデータセット: E
  • E
    • 1月 2004
      ソース: Carbon Dioxide Information Analysis Center
      アップロード者: Knoema
      データセットを選択
      Estimates of Monthly CO2 Emissions from Fossil-Fuel Consumption in the U.S.A. The data from which these carbon-emissions estimates were derived are values of fuel consumed: in billions of cubic feet, for natural gas; in millions of barrels, for petroleum products; and in thousands of short tons, for coal. The resulting emissions estimates are expressed as teragrams of carbon. A teragram is 10^12 grams, or 10^6 metric tons. The fuel-consumption values were multiplied by their respective thermal conversion factors, which are in units of heat energy per unit of fuel (i.e., per cubic foot, barrel, or ton). In keeping with conventional usage in the United States, values are for the gross (higher) heating values of the respective fuels. The results are expressed in units of heat energy derived from the fuel. These energy values were then multiplied by their respective carbon dioxide emission factors, in units of the mass of carbon emitted per unit of energy liberated by the oxidation of the carbon in the fuel.