エラーが発生しました。 詳細 隠す
保存されていないページがあります。 復元 取り消す

U.S. Department of Transportation

すべてのデータセット:  F M R U
  • F
    • 2月 2018
      ソース: U.S. Department of Transportation
      アップロード者: Knoema
      以下でアクセス: 24 4月, 2018
      データセットを選択
      The Freight Analysis Framework (FAF), produced through a partnership between BTS and FHWA, integrates data from a variety of sources to create a comprehensive picture of freight movement among states and major metropolitan areas by all modes of transportation. Starting with data from the 2012 Commodity Flow Survey (CFS) and international trade data from the Census Bureau, FAF incorporates data from agriculture, extraction, utility, construction, service, and other sectors. FAF version 4 (FAF4) provides estimates for tonnage, value, and ton-miles by regions of origin and destination, commodity type, and mode. Data are available for the base year of 2012, the recent years of 2013-2015, and forecasts from 2020 through 2045 in 5-year intervals.
  • M
  • R
    • 10月 2016
      ソース: U.S. Department of Transportation
      アップロード者: Knoema
      以下でアクセス: 04 4月, 2017
      データセットを選択
      The Highway Trust Fund is set to expire on July 31. Without action from Congress, federal funding for transportation will come to a screeching halt -- and with it, so will traffic in many places. Over the last six years, Congress has passed 33 short-term measures rather than funding transportation for the long term. And our transportation system -- our roads and bridges, especially -- is in a dire state of disrepair because of it. The attached fact sheet shows us this. Experts agree: The only way to prepare our transportation system for the next generation is to stop this cycle of short-term measures and pass a long-term transportation bill.
  • U
    • 1月 2018
      ソース: U.S. Department of Transportation
      アップロード者: Knoema
      以下でアクセス: 25 4月, 2018
      データセットを選択
      Data are seasonally adjusted and indexed.
    • 4月 2018
      ソース: U.S. Department of Transportation
      アップロード者: Knoema
      以下でアクセス: 23 4月, 2018
      データセットを選択
    • 6月 2018
      ソース: U.S. Department of Transportation
      アップロード者: Knoema
      以下でアクセス: 18 6月, 2018
      データセットを選択
      The Transportation Services Index (TSI), created by the U.S. Department of Transportation (DOT), Bureau of Transportation Statistics (BTS), measures the movement of freight and passengers. The index, which is seasonally adjusted, combines available data on freight traffic, as well as passenger travel, that have been weighted to yield a monthly measure of transportation services output. Source: TSI numbers are BTS estimates. Note: Monthly data changes with each release due to the use of concurrent seasonal analysis, which results in seasonal analysis factors changing as each month's data are added.
    • 1月 2018
      ソース: U.S. Department of Transportation
      アップロード者: Knoema
      以下でアクセス: 25 4月, 2018
      データセットを選択
      Numbers may not add to totals due to rounding. The 2015 data are provisional estimates that are based on selected modal and economic trend data. All truck, rail, water, and pipeline movements that involve more than one mode, including exports and imports that change mode at international gateways, are included in multiple modes & mail to avoid double counting. As a consequence, rail and water totals in this table are less than those reported in other published sources.
    • 7月 2017
      ソース: U.S. Department of Transportation
      アップロード者: Knoema
      以下でアクセス: 24 4月, 2018
      データセットを選択
      The Airports dataset including other aviation facilities is as of July 6, 2017, and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics's (BTS's) National Transportation Atlas Database (NTAD). The Airports database is a geographic point database of aircraft landing facilities in the United States and U.S. Territories. Attribute data is provided on the physical and operational characteristics of the landing facility, current usage including enplanements and aircraft operations, congestion levels and usage categories. This geospatial data is derived from the FAA's National Airspace System Resource Aeronautical Data Product.
    • 7月 2017
      ソース: U.S. Department of Transportation
      アップロード者: Knoema
      以下でアクセス: 24 4月, 2018
      データセットを選択
      The Amtrak Stations dataset is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics's (BTS's) National Transportation Atlas Database (NTAD). Updated database of the Federal Railroad Administration's (FRA) Amtrak Station database. This database is a geographic dataset containing Amtrak intercity railroad passenger terminals in the United States and Canada. Attribute data include services and passenger amenities provided at the station.
    • 4月 2018
      ソース: U.S. Department of Transportation
      アップロード者: Knoema
      以下でアクセス: 25 4月, 2018
      データセットを選択
      The Ports dataset as of April 3, 2018 is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics's (BTS's) National Transportation Atlas Database (NTAD). Contains physical information on commercial facilities at U.S. Coastal, Great Lakes and Inland Ports. The data consists of location description, street address, city, county name, congressional district FIPS code, type of construction, cargo-handling equipment, water depth alongside the facility, facility type ( dock, fleeting area, lock and/or dam) berthing space, latitude, longitude, current operators and owner’s information, list of commodities handled at facility, road/railway connections, equipment available at facility, storage facilities, cranes, transit sheds, grain elevators, marine repair plants, fleeting areas, and docking, and facility start/stop date.
    • 2月 2018
      ソース: U.S. Department of Transportation
      アップロード者: Knoema
      以下でアクセス: 24 4月, 2018
      データセットを選択
      National Transportation Statistics presents statistics on the U.S. transportation system, including its physical components, safety record, economic performance, the human and natural environment, and national security.
    • 1月 2018
      ソース: U.S. Department of Transportation
      アップロード者: Knoema
      以下でアクセス: 25 4月, 2018
      データセットを選択
      The cost of transportation stems from the resources it requires—labor, equipment, fuel, and infrastructure. Many resources are purchased by firms that provide transportation services, such as labor purchased by a railroad or fuel bought by a trucking company. Other resources are purchased directly by the users of transportation, such as fuel purchased by households for automobile travel. In addition, federal, state, and local governments provide most of the transportation infrastructure, such as highways. The prices that transportation companies charge for transportation services become out-of-pocket costs to travelers and freight shippers, and influence their transportation choices. Because transportation is an input to the production of almost all goods and services, transportation price changes can influence the cost of other goods and services as well. Transportation prices themselves are affected by the prices of inputs, such as labor costs, fuel costs, and the costs of transportation parts.
    • 2月 2018
      ソース: U.S. Department of Transportation
      アップロード者: Knoema
      以下でアクセス: 25 4月, 2018
      データセットを選択
      Transportation’s contribution to the economy can be measured by its contribution to gross domestic product (GDP). GDP is an economic measure of all goods and services produced and consumed in the country. The transportation component of GDP can be measured as either: • the share of all expenditures (by households, private firms, and the government) on final goods and services that are related to transportation (collectively known as the final demand for transportation), or • the contribution of transportation services produced (known as value added) to GDP
    • 2月 2017
      ソース: U.S. Department of Transportation
      アップロード者: Knoema
      以下でアクセス: 17 5月, 2018
      データセットを選択
      The average annual growth rate represents averages as follows: for 2000 - average from 1990 to 200, for 2010 - average from 2000 to 2010, for 2015 - average from 2010 to 2015, for 2040 - average from 2015 to 2040.