エラーが発生しました。 詳細 隠す
保存されていないページがあります。 復元 取り消す

Institute for Health Metrics and Evaluation

The Institute for Health Metrics and Evaluation (IHME) is an independent global health research center at the University of Washington that provides rigorous and comparable measurement of the world's most important health problems and evaluates the strategies used to address them. IHME makes this information freely available so that policymakers have the evidence they need to make informed decisions about how to allocate resources to best improve population health.

すべてのデータセット:  G
  • G
    • 9月 2017
      ソース: Institute for Health Metrics and Evaluation
      アップロード者: Knoema
      以下でアクセス: 14 11月, 2017
      データセットを選択
      The Global Burden of Disease Study 2015 (GBD 2015), coordinated by the Institute for Health Metrics and Evaluation (IHME), estimated the burden of diseases, injuries, and risk factors at the global, regional, national, territorial, and, for a subset of countries, subnational level. As part of this study, estimates for obesity and overweight prevalence and the disease burden attributable to high body mass index (BMI) were produced by sex, age group, and year for 195 countries and territories. Estimates for high BMI-attributable deaths, DALYs, and other measures (1990-2015) are available from the GBD Results Tool. Files available in this record include obesity and overweight prevalence estimates for 1980-2015. Study results were published in The New England Journal of Medicine in June 2017 in "Health Effects of Overweight and Obesity in 195 Countries over 25 Years."
    • 5月 2014
      ソース: Institute for Health Metrics and Evaluation
      アップロード者: Kirill Kosenkov
      以下でアクセス: 27 8月, 2015
      データセットを選択
      Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013. Comparable estimates based on systematically identified surveys, reports, and published studies (n=1769) that included data for height and weight, both through physical measurements and self-reports, using mixed effects linear regression to correct for bias in self-reports. Data for prevalence of obesity and overweight by age, sex, country, and year (n=19 244) obtained with a spatiotemporal Gaussian process regression model to estimate prevalence with 95% uncertainty intervals (UIs). Research by the staff of the Institute for Health Metrics and Evalutaion with co-authors. Published online 28 May 2014, "The Lancet" Volume 384, No. 9945, p766–781. DOI: http://dx.doi.org/10.1016/S0140-6736(14)60460-8

当社の個人情報保護方針&クッキーポリシー

当社のウェブサイトではクッキーを使用し、ユーザー様のオンライン体験を向上させております。このウェブサイトを立ち上げたときに、クッキーはお使いのコンピュータ上に配置されます。インターネットブラウザの設定を通して、個人的なクッキーの設定を変更できます。

個人情報保護方針